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Abstract

The hydrodynamic stability of flow of an incompressible fluid through a plane-parallel channel or circular duct filled

with a saturated porous medium, modeled by the Brinkman equation, is discussed on the basis of an analogy with a

magneto-hydrodynamic problem (Hartmann flow). Flow in a circular duct is found to be stable to small disturbances

for all values of the Reynolds number, but for a plane-parallel channel the flow is unstable if the Reynolds number

exceeds a critical value, dependent on a Darcy number.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Until recently little interest was taken in turbulence in

porous media on a macroscopic scale (on the scale of a

representative elementary volume), as distinct from

turbulence within the pores. However, with the advent

of hyperporous materials (such as the metallic foams

used in the cooling of electronic equipment) there has

been a substantial increase in interest in this topic. The

subject has been surveyed by Lage et al. [1].

As far as the author is aware, there has been no

discussion in the literature about the stability problem

relating to the onset of macroscopic turbulence. Indeed,

if one limits oneself to flow modeled by Darcy�s law

there is little to discuss. The flow in a duct or channel is

then simply a slug flow, and it is well known that this is

stable, to small disturbances at least, for all values of the

Reynolds number. Indeed, in this case one can apply a

Galilean transform and find a reference frame in which

the fluid is at rest. On the other hand, if the porosity is

very high then one would expect to have a situation
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close to the flow of a Navier–Stokes fluid through a duct

or channel. It is well known that Poiseuille flow in a

circular duct is stable to small disturbances at all values

of the Reynolds number, but for the case of plane

Poiseuille flow the flow becomes unstable to small dis-

turbances when the Reynolds number (based on half the

channel width) exceeds the critical value 5772 (see, for

example, [2]). Thus in the case of flow in a plane-parallel

channel filled with a hyperporous material, one would

expect there to be a critical Reynolds number, dependent

on the Darcy number Da, taking a value close to 5772

for very large values of Da, and increasing as Da de-

creases as a result of the velocity profile flattening due to

the presence of the solid matrix of the porous medium.

On the other hand, one would expect that in the case of

a circular duct filled with porous material, the flow

would be stable to small disturbances no matter what

are the values of the Reynolds number and the Darcy

number.

In this paper the stability of flow in the plane-parallel

channel situation is examined in detail. Normally one

would have to spend a great deal of effort solving the

Orr–Sommerfeld equation for the appropriate class of

velocity profiles. Fortunately, one can here avoid this

effort by making use of an analogy between the flow in
ed.
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a channel filled with a porous medium modeled by

the Brinkman equation, and a well-known type of

magnetohydrodynamic (MHD) flow, namely Hartmann

flow [3]. In Section 2 this analogy is established in detail,

and in Section 3 the analogy is applied.
2. The analogy between Hartmann flow and flow in a

porous medium

Under the usual MHD approximations, flow of an

electrically conducting fluid is governed by the mo-

mentum equation obtained by adding a term repre-

senting force per unit volume, equal to j� B, to the

right-hand side of the Navier–Stokes equation, where B

is the magnetic induction and j is the current density,

given in the absence of an applied electric field by

j ¼ rðv� BÞ: ð1Þ

Here r is the electrical conductivity and v is the fluid

velocity vector. We now consider the case where the

magnetic diffusivity is very large, so that perturbations

from an applied magnetic induction B0 die away rapidly.

Suppose that one has a Cartesian frame in which the

x-axis is directed along the axis of the channel and the

z-axis is directed in the transverse direction. Then in

the case of axial flow and a uniform transverse applied

magnetic field one has

v ¼ ðuðzÞ; 0; 0Þ; B ¼ ð0; 0;B0Þ; and so

j ¼ ð0;�rB0uðzÞ; 0Þ; j� B ¼ ð�rB2
0uðzÞ; 0; 0Þ: ð2Þ

In the case of steady flow, the x-component of the mo-

mentum equation is

0 ¼ � dp
dx

þ l
d2u
dz2

� rB2
0u: ð3Þ

For the case of constant pressure gradient G ¼ �dp=dx,
the solution of Eq. (3) subject to the no-slip boundary

conditions

u ¼ 0 at z ¼ �L ð4Þ

is

u ¼ U0

coshM � coshðMz=LÞ
coshM � 1

; ð5Þ

where U0 is the velocity at the center line of the channel

and

M ¼ r
l

� �1=2

B0L: ð6Þ

The dimensionless parameter M is commonly called the

Hartmann number.

Eq. (3) may be compared with the corresponding

equation for flow in a porous medium governed by the

Brinkman equation, namely
0 ¼ � dp
dx

þ l
d2u
dz2

� /l
K

u: ð7Þ

Here u denotes the intrinsic velocity, related to the

Darcy velocity uD by the Dupuit–Forchheimer rela-

tionship uD ¼ /u, and it has been assumed that the ef-

fective viscosity is equal to l=/. It is clear that Eqs. (3)
and (7) become identical if one identifies rB2

0 with /l=K.
This is equivalent to identifying the Hartmann number

M with ð/=DaÞ1=2, where Da is the Darcy number de-

fined by Da ¼ K=L2. Further, the applicable boundary

conditions are the usual hydrodynamic ones in each

case. (In the case of large magnetic diffusivity the elec-

tromagnetic boundary conditions do not affect the hy-

drodynamic stability problem.) Thus there is an exact

analogy between the MHD problem and the Brinkman

porous medium problem as far as the basic velocity

profile is concerned.

In order to discuss the hydrodynamic stability

problem, we need to include the inertial terms in the

momentum equation and extend the equation from one

to two dimensions. (Squire�s theorem provides justifi-

cation for working in two dimensions rather than three

dimensions.) We will assume that in the porous medium

the Brinkman equation takes form

q
ou

ot

�
þ ðu � rÞu

�
¼ �rp þ lr2u� /l

K
u: ð8Þ

For two-dimensional flow, u ¼ ðu; 0;wÞ. The reader will

note that the Forchheimer quadratic drag term has been

omitted. The expected effect on the stability resulting

from the inclusion of this term is discussed below.

The full form of the momentum equation for the

MHD problem is

q
ou

ot

�
þ ðu � rÞu

�
¼ �rp þ lr2u� rB2

0ðu; 0; 0Þ: ð9Þ

The analogy is no longer exact, because in the MHD

problem the transverse component of the velocity has no

effect on the drag term (since it is parallel to the applied

magnetic field). However, the author would argue that

the effect of this difference on the linear instability

problem, in which the perturbations (and in particular

the transverse velocity) are assumed to be infinitesimal,

is expected to be small. In fact, the detailed analysis

described below shows that the effect of the difference is

zero.

The non-dimensional form of Eq. (8), based on

length scale L, velocity scale U0, and time scale L=U0 is

R
oûu

ot̂t

 
þ ðûu � r̂rÞûu

!
¼ �rp̂p þ r̂r2ûu�M2

Dûu; ð10Þ

where R is the Reynolds number, defined by

R ¼ qU0L=l; ð11Þ



Table 1

The effect of the parameter MD ¼ ð/=DaÞ1=2 ¼ ð/L2=KÞ1=2 on

the critical Reynolds number Rc, the critical wavenumber ac,
and the critical wave speed cc

MD Rc ac cc

0.0 5772 1.0205 0.2640

0.5 6706 1.0057 0.2559

1.0 10016 0.9718 0.2355

2.0 28604 0.9278 0.1921

3.0 65155 0.9582 0.1690

4.0 112395 1.0355 0.1598

5.0 164090 1.1342 0.1564

10.0 439818 1.7391 0.1548

15.0 708962 2.4566 0.1550

20.0 961767 3.2376 0.1550

30.0 1449060 4.8461 0.1550

50.0 2415550 8.0766 0.1550

70.0 3381771 11.3072 0.1550

100.0 4831101 16.1531 0.1550

200.0 9662203 32.3063 0.1550

Values based on Table 1 of [6].
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and MD denotes the Darcy analogue of the Hartmann

number, defined by

MD ¼ /
Da

� �1=2

: ð12Þ

The circumflexes in Eq. (10) are now dropped, so that

they can be used again in another context. The pertur-

bation analysis now follows the familiar path, as de-

scribed in Drazin and Reid [2].

Small perturbations from the basic steady-state so-

lution are denoted by primes. We let

uðx; tÞ ¼ UðzÞiþ u0ðx; tÞ;
pðx; tÞ ¼ P ðzÞ þ p0ðx; tÞ;

ð13Þ

where UðzÞ and PðzÞ refer to the basic solution. We

substitute in Eq. (10) and neglect second-order terms.

The linearized forms of (10) and the continuity equation

are

R
o

ot

��
þ U

o

ox

�
u0 þ w0 dU

dz

�

¼ �rp0 þ r̂r2u0 �M2
Du

0 and r � u0 ¼ 0: ð14Þ

The normal mode analysis involves the introduction of

solutions of the form

u0ðx; tÞ ¼ ûuðzÞ exp½iðax� actÞ�; ð15Þ

p0ðx; tÞ ¼ p̂pðzÞ exp½iðax� actÞ�: ð16Þ

Substitution into Eq. (14) yields

fD2 � a2 �M2
D � iaRðU � cÞgûu ¼ RU 0ŵwþ iap̂p;

fD2 � a2 � iaRðU � cÞgŵw ¼ Dp̂p;

iaûuþ Dŵw ¼ 0: ð17a;b;cÞ

Elimination of ûu and p̂p in turn gives

1

iaR
ðD2 � a2Þ2ŵw ¼ ðU � cÞðD2 � a2Þŵw� U 00wþ iM2

D

aR
D2ŵw:

ð18Þ

This is the Orr–Sommerfeld equation for the porous

medium problem. It has to be solved subject to the ap-

propriate boundary conditions. The no-slip condition

(together with the equation of continuity) implies that

ŵw ¼ Dŵw ¼ 0 at z ¼ 1 and at z ¼ �1: ð19Þ

Allowing for differences in notation, Eq. (18) is identical

with Eq. (26) in a paper by Lock [4]. Lock comments

that this equation differs from the Orr–Sommerfeld

equation of ordinary hydrodynamics only in the last

term and this is negligible for either neutral or amplified

oscillations, and that in the Hartmann problem the

principle effect of the magnetic field is the modification
of the basic velocity distribution. Amongst other things,

Lock establishes the appropriate analogue of Squire�s
theorem for the present problem.

A similar analogy, but one applicable to a natural

convection situation, was observed by Vasseur et al. [5].
3. Application of the analogy

Thus there is no need to perform new calculations

for the porous medium problem. One can quote those

results tabulated by Lock [4], or even better the more

accurate results computed by Takashima [6]. The latter

are presented in Table 1.
4. Discussion

As one would expect, the effect of an insertion of a

porous solid matrix into a channel is to stabilize the

flow. Flow in a circular tube is already stable to small

disturbances even for the case of a fluid clear of solid

material, so it is expected to stay stable to small dis-

turbances when the solid matrix is added.

The case a plane-parallel channel is more interesting.

The results presented here show that the flow will be-

come unstable to small disturbances at a sufficiently high

Reynolds number, but when the Darcy number is small

the critical value of the Reynolds number is very high.

The appearance of instability does not necessarily

imply the onset of turbulence, since it is possible, and

indeed likely, that the wavy disturbances will grow in

a more or less regular fashion in the case of a porous

medium with moderate or small Darcy number. The
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problem of the stability to disturbances of finite ampli-

tude, at Reynolds numbers subcritical with respect to the

linear stability problem, remains to be investigated. One

would expect that the onset of this sort of instability, if it

occurs, would be associated with a transition to mac-

roscopic turbulence.

The addition of a Forchheimer quadratic drag term

to the momentum equation would be expected to fur-

ther stabilize the flow, primarily as a result of a flat-

tening of the basic velocity profile. Also, for the case of a

given applied pressure gradient, the increased drag

would result in a reduced mean velocity, and that would

make it harder for any critical Reynolds number to be

reached. This means that the critical Reynolds numbers

given in Table 1 should be regarded as lower bounds on

the true critical Reynolds number in an experimental

situation.

In fact, a quantitative estimate of the effect of qua-

dratic (form) drag can be obtained as follows. The ar-

gument below is based on the assumption that the

stability criterion is determined primarily by the shape of

the velocity profile, together with the observation that

that shape is determined by the ratio of coefficients of

terms in the momentum equation made quasi-linear in

the velocity. The Forchheimer extension involves the

addition of the term

• ðcFq=K1=2Þ/2juju to the right-hand side of Eq. (8),

and hence a term

• ðcFL=K1=2ÞR/2jûujûu to the right-hand side of Eq. (9). If

one approximates jûuj by 1, then one has Eq. (9) with

MD replaced by an effective value M�
D where

M�
D ¼ /

Da
½1

�
þ cF/Da1=2R�

�1=2

: ð20Þ

The Reynolds number R can now be approximated by

Rc, given by Table 1, corresponding to the value of M
appropriate for the case cF ¼ 0. With M�
D thus obtained,

one can go back to Table 1 and read off a new value of

the critical Reynolds number Rc. (If one wants to, one

can iterate the process.) It is clear that the Forchheimer

effect leads to an increase in the effective value of MD,

and hence to an increase in the critical Reynolds num-

ber, as expected.
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